Проанализируем список LSA на ABR R2 и R4:
На рисунке 16 видно, что в LSDB маршрутизатора R2 хранится 5 LSA type 1: три в backbone-area и два – в area 20. Причём LSA type 1 от маршрутизаторов R1 и R4 присутствуют в backbone, но отсутствуют в area 20. Это подтверждает, что Router LSA генерирует каждый маршрутизатор и они не распространяются в соседние области.
Число LSA type 2 соответствует числу каналов в областях, с которыми ассоциирован R2: один LSA type 2 генерирует R4, являющийся DR в сегменте 172.16.100.0/24 и один LSA type 2 формирует R3, который выбран DR в сегменте 192.168.20.0/24.
В backbone-area распространяется два LSA type 3 с информацией о сетях 192.168.10.0/24 от R4 и 192.168.20.0/24 от R2. Следует отметить, что при прохождении LSA type 3 через область у него подменяется источник. Так, источником LSA type 3 с информацией о сети 192.168.10.0/24 для area 20 является R2, а не R4, как в backbone.
Особняком в LSDB располагаются LSA type 5: поскольку данные сообщения распространяются через все области в неизменном виде, то их не ассоциируют с конкретной областью, а выделяют в отдельную категорию “external”. На иллюстрациях 16 и 17 видно, что в базе данных присутствует LSA type 5 от R5 с информацией о сети 10.0.0.0/8, т.е. R5 сгенерировал LSA type 5 в area 10, а оно распространилось через R4-R2 в область area 20.
Маршрутизатор R2, получив LSA type 5, ничего не знает о местонахождении R5, т.к. маршрутизатор расположен в другой области, а LSA type 1 с информацией о R5 не выходят за пределы area 10. Для решения этой проблемы маршрутизатор R4, являясь ABR, генерирует LSA type 4 для backbone area, что видно на иллюстрации 17.
Тем самым R4 рассказывает всем маршрутизатором backbone area о том, что R4 знает о расположении ASBR R5. Маршрутизатор R2, получив LSA type 4, подобно LSA type 3, распространяет его в area 20, но заменив источник сообщения на свой RID.
Также следует обратить внимание на то, что в area 10 отсутствует LSA type 4, поскольку маршрутизаторы этой области знают о местонахождении R5 из LSA type 1 и type 2.
Продемонстрируем таблицу маршрутизации R1:
Из иллюстрации 18 видно, что в таблице маршрутизации R1 есть маршрут к каждой из сетей нашей схемы, что справедливо и для остальных устройств OSPF-домена.
Для того, чтобы объяснить смысл LSA type 7, сконфигурируем area 10 как NSSA (команда на R4 и R5 /routing ospf area set [find name=area_10] type=nssa):
На иллюстрации 19 видно, что маршрутизатор R5 анонсирует внешнюю сеть 10.0.0.0/8 в area 10 используя LSA type 7. Поскольку LSA type 7 существуют только в рамках NSSA области, то маршрутизатор R4 передаёт данную маршрутную информацию в backbone area посредством LSA type 5. Таким образом, для всех остальных областей маршрутизатор R4 становится ASBR.
Также следует обратить внимание, что в рамках area 10 существует маршрут по умолчанию, анонсируемый R4 через LSA type 7. Это объясняется спецификой NSSA областей и будет рассмотрено ниже.
В RouterOS есть возможность детализации LSA (команда /routing ospf lsa print detail):
На иллюстрации 20 представлена детализация LSA type 1 и type 2 на маршрутизаторе R4. Видно, что в LSA type 1, формируемом R4, маршрутизатор говорит о том, что он является ASBR, его ip-адрес в backbone area 172.16.100.4 и RID=4.4.4.4, а в LSA type 2 перечисляет RID всех маршрутизаторов сегмента R1, R2, R4 и указывает используемую маску – 255.255.255.0.
Следует отметить, что RouterOS не позволяет удалить из конфигурации backbone area, т.е. в конфигурации R3 фактически представлены две области, backbone и area 20, но в рамках данной задачи используется только area 20.