Виды дуплекса
Основная цель организации каналов связи — передача данных между передатчиком и приёмником. В зависимости от направлений потоков данных выделяют следующие системы связи (см. рисунок ниже):
- симплексные: данные могут быть переданы только от передатчика к приёмнику. Классическим примером таких систем является система телевещания, в которой поток вещания распространяется от вещательного центра до телеприёмников, которые, как правило, совмещены с телевизорами. Обратное направление обмена данными считается невозможным;
- полудуплексные: в отдельные моменты времени устройство выполняет роль приёмника или передатчика. Системы Wi-Fi построены по такому принципу: на устройстве реализованы приёмные и передающий тракт, между которыми выполняется переключение, в зависимости от момента времени;
- дуплексные: устройства одновременно выполняют приём и передачу данных. Примером такой системы является стандарт FastEthernet, в котором часть жил витой пары используется для передачи, а часть — для приёма.
Типы беспроводных каналов связи по направлению передачи данных: а) симплексные, б) полудуплексные, в) дуплексные
Существуют три ресурса, за счёт которых может быть организован дуплекс или полудуплекс: частота, время и пространство. Для частотного дуплексирования потребуется использовать два частотных канала и два радиомодуля на приёмнике и передатчике, для пространственного — два комплекта приёмо-передающих устройств, разнесённых на расстоянии, либо использующие узконаправленные антенны. Частотный и пространственный методы организации дуплексного канала являются дорогостоящими, поэтому на практике чаще всего используется метод временнОго полудуплекса. При временнОм полудуплексе выделяются интервалы времени (тайм-слоты) для передачи и приёма данных, которые циклически повторяются.
Пример организации временнОго полудуплекса канала связи представлен на иллюстрации ниже. Время обмена данными логически делится на радиокадры, в рамках которых выделены тайм-слоты для приёма и передачи. Размер радиокадра определяет показатели качества для конечных сервисов. Малый размер радиокадра позволяет снизить задержку, передаваемых пакетов данных, что критично для сервисов реального времени, например телефонии. Большой размер радиокадра снижает объём служебных данных, т.е. пропускная способность таких систем будет выше, но увеличится задержка.
Пример организации полудуплекса по времени
Организация множественного доступа
В сценариях организации каналов связи в топологии «точка-многоточка» одно устройство устанавливает радиоканал с несколькими абонентскими устройствами. Для того, чтобы распределить временнОй ресурс между ними могут использовать несколько подходов.
Следует сделать ремарку о терминологии. Поскольку множественный доступ абонентских устройств организован за счёт распределения времени, то все рассматриваемые способы можно назвать множественным доступом с разделением по времени (TDMA), однако чаще такой термин используется для одноимённого метода, поэтому далее под TDMA будем понимать конкретный метод организации каналов связи с множеством абонентов, рассмотренный ниже.
Первым методом является CSMA/CA (множественный доступ с контролем несущей и избеганием коллизий). Этот метод схож с методом, используемым в протоколе Ethernet с той разницей, что в Ethernet устройства должны детектировать коллизии (CSMA/CD), а в CSMA/CA — избегать коллизий. Устройство перед началом передачи данных прослушивает эфир и начинает передачу только в том случае, если эфир свободен, т.е. ни одно из устройств не передаёт данные.
Такой метод множественного доступа используется в системах Wi-Fi и подвержен проблеме скрытого абонента (см. рисунок ниже). Пусть станция 1 передаёт данные точке доступа и в этот же момент времени станции 2 тоже необходимо передать данные. В соответствии с логикой CSMA/CA станция 2 прослушивает эфир, но т.к. станции 1 и 2 расположены по разные стороны от точки доступа, то сигнал станции 1 может не оказаться ниже чувствительности приёмника станции 2, поэтому для станции 2 эфир будет считаться свободным и она начнёт передачу. Точка доступа получит одновременно сигналы от станций 1 и 2, что приведёт к коллизии, а значит эфир будет использоваться неэффективно.
Беспроводные системы Wi-Fi, находящиеся под управлением RouterOS позволяют решить проблему скрытого абонента с помощью использования сообщений RTS/CTS. Перед отправкой кадров данных, станция отправляет служебное сообщение RequestToSend и начинает передачу только в том случае, если точка доступа в ответ отправила сообщение ClearToSend.
Проблема скрытого абонента в системах Wi-Fi
Вторым методом организации множественного доступа является Polling, в котором решена проблема скрытого абонента. Точка доступа выступает в роли арбитра и станции могут начать передачу только в случае разрешение со стороны арбитра. В начале цикла обмена данными точка доступа формирует служебное сообщение для того, чтобы станции сообщили о необходимости передачи данных. Получив запросы от станций на передачу данных, точка доступа выделяет ресурсы для каждого из абонентов и последовательно рассылает служебное сообщение Poll, после получения которого станция может начать передачу данных. Во второй части цикла, точка доступа передаёт сервисные данные для станций.
Данный метод множественного доступа реализован в проприетарном протоколе Nv2 Nstreme, однако использование протокола MikroTik Nstreme подразумевает отказ от совместимости с устройствами, работающими по технологии Wi-Fi.
Протокол Nstreme имеет интересное расширение, позволяющие объединить два беспроводных устройства при организации каналов связи «точка-точка», называемое Nstreme-dual. В этом случае, канал, образуемый первым радиомодулем используется для передачи, а второй — для приёма, причём радиохарактеристики (частотный диапазон, ширина канала и т.д.) каналов могут отличаться.
Организация канала связи с использованием Nstreme-dual и устройств LHG XL 52 ac
Третий метод множественного доступа — метод множественного доступа с разделением по времени (TDMA). В RouterOS данный метод реализован в проприетарном протоколе Nv2.
Каждый цикл обмена данных состоит из радиокадров, число которых равно количеству подключенных абонентских станций (см. рисунок). Каждый радиокадр имеет фиксированную длину и поделён на две части: передача данных в восходящем и нисходящем каналах. Деление радиокадра может быть несимметричным, что позволяет увеличить пропускную способность одного из направлений передачи данных за счёт сокращения другого.
Преимуществом TDMA (или Nv2 MikroTik) является то, что в рамках цикла обмена данными каждой из абонентских станций будет гарантированно будет выделен ресурс для передачи и приёма данных. Метод CSMA/CA таких гарантий не обеспечивает. Наличие такого преимущества является важным при наличии трафика реального времени, т.к. уровень джиттера можно приблизить к нулю, а величиной задержки управлять с помощью размера радиокадра и длительности цикла обмена данными (числа абонентских устройств).
Пример TDMA-системы с тремя абонентами
Вторым преимуществом метода TDMA является возможность реализации многосекторных базовых станций по схеме ABAB (см. рисунок ниже). Схема ABAB подразумевает выделение всего двух частотных каналов для четырёх секторов, вместо четырёх в классическом сценарии. За счёт того, что секторные антенны, стоящие «спиной» друг к другу, выполняют одновременную передачу и приём, отсутствует влияние заднего лепестка одного из секторов на другой.
Примеры организации четырёхсекторной базовой станции: а — классический подход, б — TDMA
Стандарт Wi-Fi жёстко устанавливает возможные настройки радиомодуля. Список поддерживаемых частот для устройств MikroTik Wi-Fi представлен по ссылке.
Несмотря на требования стандарта, некоторые устройства, находящиеся под управлением RouterOS, позволяют выполнить конфигурацию радиомодуля, отличную от требований. В частности, можно изменить центральную частоту и ширину канала связи на нестандартные. Список радиомодулей, поддерживаемых нестандартную конфигурацию представлен в статье по ссылке.
Виртуальные точки доступа
Устройства под управлением RouterOS поддерживают функциональность создания виртуальных беспроводных интерфейсов. Виртуальные беспроводные интерфейсы привязаны к физическому интерфейсу и разделяют с ним общую среду, работая в том же частотном канале. Режим работы виртуального интерфейса не зависит от режима физического интерфейса, таким образом, если физический интерфейс настроен в режиме станции, а виртуальный – в режиме точки доступа, то можно организовать схему ретрансляции. Кроме того, виртуальные беспроводные интерфейсы могут быть использованы для разделения сервисов, например несколько Wi-Fi сетей для разных подразделений компании могут быть реализованы на одном устройстве с одним радиомодулем. Разумеется, виртуальные интерфейсы делят между собой физические ресурсы, а значит число виртуальных интерфейсов влияет на производительность в каждой из Wi-Fi сетей.
Сеть MikroTik WiFi, развёрнутая на крупном объекте может представлять из себя множество точек доступа, работающих на одном или нескольких частотных каналах и использующих один или несколько SSID. Для централизованной конфигурации таких точек доступа может использоваться Wi-Fi-контроллер.
Операционная система RouterOS поддерживает возможность создания контроллера Wi-Fi сети с помощью раздела CAPsMAN. В качестве контроллера может выступать любое из устройств под управлением RouterOS, подключенное к сети, независимо от наличия или отсутствия беспроводных интерфейсов.
Функциональность каждого из упомянутых стандартов (Wi-Fi, Nstreme, Nv2) представлена по ссылке.
Сопутствующие радиотехнологии
Обзор поддержки беспроводных технологий со стороны RouterOS будет неполным, если остановиться на рассмотрении технологий, реализованных на радиомодулях MikroTik 802.11. В RouterOS реализована поддержка модулей GPS, 3G/LTE и LoRa.
Примером использование модулей GPS в реальных сценариях является установка устройств LtAP mini c ACGPSA на подвижный транспорт. Это позволяет организовать сбор телеметрии с постоянным мониторингом местоположения транспорта.
В RouterOS 3G/LTE-модем представлен как интерфейс lte и обладает всеми базовыми функциями сетевых интерфейсов: интерфейс может быть ассоциирован с IP-адресом, интерфейс может быть использован в правилах Firewall и т.д. Оснащение устройств MikroTik 3G/LTE-модемами может быть выполнено несколькими способами:
- устройство поставляется с модемом. Некоторые модели позволяют установить более одной SIM-карты для организации нескольких каналов связи с сетями сотовых операторов. Например, устройство LtAP позволяет установить три SIM-карты;
- устройство позволяет установить один или несколько модемов в виде miniPCIe-карт. Использование нескольких модемов позволяет реализовывать схемы резервирования или агрегации трафика. Как правило miniPCIe-карты имеют разъёмы для подключения внешних антенн, что позволяет улучшить надёжность соединения с базовыми станциями операторов сотовой связи;
- подключение модема через USB-порт. Некоторые модели устройств MikroTik оснащены USB-портом, через который может быть подключен 3G/LTE-модем. Вместо USB-модема можно подключить мобильный телефон и, при поддержке со стороны телефона, RouterOS определит устройство как LTE-модем. В частном случае, мобильный телефон может выступать в роли Wi-Fi-модуля, подключенного через USB к MikroTik.
Новой, на момент написания статьи, линейкой устройств MikroTik являются устройства, поддерживающие технологию LoRaWAN. Это технология сбора телеметрических информаций от различных датчиков. Отличительными чертами таких систем являются:
- большой радиус соты;
- частотные диапазоны 863-870 и 902-928 МГц;
- низкая скорость передачи данных;
- редкие сеансы связи.
.... "Использование угловых модуляций(-? - думаю поляризаций, модуляции здесь ни при чем -прим.) позволяет кратно увеличивать пропускную способность системы, однако волны угловой поляризации будут оказывать влияние на волны вертикальной и горизонтальной поляризации."